当前位置:首页 >  科技 >  IT业界 >  正文

拿下世界第一的赛飞平台到底有多牛?平安创新科技来解答

 2019-09-19 14:24  来源:互联网  我来投稿   云台的个人主页 撤稿纠错

  各种互联网项目,新手可操作,几乎都是0门槛

在平安智慧医疗这支队伍里,有一群很隐没的人。平安智慧医疗AI算法平台部负责人高鹏博士把自己和团队比喻为AI后勤部队,但准确来说,他们更像 “铸剑师”。

医疗AI “铸剑师”

据全球最大的文献摘要与科研信息引用数据库Scopus显示,自2017年以来,AI领域年发表论文数量增长率超过50%。也就是说,约20分钟就会有一篇AI领域论文发表。

除了新技术层出不穷外,论文复现难,以及需要趟各种“坑”的沉没成本,令前线战友们在面临产品节点压力下,无过多精力与新技术“纠缠”。“因此,我们AI算法平台部的职责就是把学术界最前沿的AI研究成果消化吸收改进,铸成简单易用又强大算法工具,放到平台上提供给前线部队。”

高鹏的战术是根据医疗AI模型研发生命周期中的四个关键环节——标注、训练、泛化、部署——入手,打造各种“AI之剑”。

在数据标注阶段,由于深度学习是一种数据驱动的技术,需要大量标注样本。然而样本标注需要耗费大量人力和资金成本;更重要的是,医学样本还需要专业的医学知识。

针对这个痛点,高鹏为队友们提供了基于主动学习(Active Learning)的智能样本标准工具。经过国家肾脏疾病临床医学研究中心病理分析项目的验证,可以减少医生约48%的标准工作量。

在模型训练阶段,训练样本的不均衡问题也是一大痛点。多数项目中,正常样本很多,但罕见的病灶、特殊样本非常稀缺,严重影响了模型的精度。就像精于技艺的匠师,高鹏总能研发出最新的武器来反制对手。基于对抗生成网络(GAN, Generative Adversarial Networks)的样本增广工具,高鹏为队友们造出第二把锋利的“剑”:

类似于谷歌AlphaGo左右互博的原理,针对特定需求算法可以生成以假乱真的样本。平安智慧医疗全球首款智能OCT眼底疾病筛查系统就用到了这项技术。在由复旦大学附属眼耳鼻喉科医院牵头,上海市一院和上海十院共同完成的多医学中心临床验证中,OCT眼底疾病筛查系统在图像质量评价、病灶检测、急迫性判断3项辅助医疗任务中,样本准确率分别达99.2%、98.6%、96.7%。

患者在上海第十人民医院由刘晓强主任进行眼底疾病智能筛查

在模型泛化阶段,“一个非常普遍的问题就是训练数据往往来自特定医院的特定设备,但是产品真正应用的时候会遇来自不同地区、医院、厂家设备的数据,这对模型泛化性能是一个巨大的挑战”。

高鹏出鞘了第三把“剑”——基于Cycle-GAN的模型跨域自适应工具。“我们发现医疗影像中结构信息很关键,因此对Cycle-GAN进行改进,加入SSIM结构保真损失函数,取得了很好的效果。”这项技术,最终帮助平安科技在EAD2019国际竞赛中,夺取了模型泛化任务冠军”。

第四把剑更接近高鹏的理想。在模型部署阶段,如何通过剪枝、量化等模型压缩技术,得到尺寸更小,速度更快的推理模型是核心问题。对此,高鹏和战友们自主研发了一款面向AutoML的深度学习框架SFE(赛飞)AI算法平台,其核心是一种稀疏化(Sparse)的分形结构(Fractal)神经网络,可针对特定问题自动演化(Evolution)。

赛飞到底有多牛?还得拿事实说话。8月初,在国际顶级自然语言处理会议EMNLP举办的COIN 2019文本理解大赛上,平安智慧医疗联合上海交通大学团队又拿下一个世界第一。AskBob文本理解技术和赛飞AI算法平台作为两项核心技术,尤其是后者,帮助平台的并行模型训练将XLNet的训练速度提高了12倍。一场数度和质量的比拼,又以取胜之资完成了较量。

高鹏并不是一个急性子,但是他面对的需求往往都是火烧眉毛的急活,在创新和效率之间他也曾犹豫过,但最终他都会选择一条难走的路,给出他的最佳方案。

作者: 云台    /    文章:852篇

申请创业报道,分享创业好点子。点击此处,共同探讨创业新机遇!

相关文章

榜单

热门排行

信息推荐

扫一扫关注最新创业资讯