1月24日,北京大学工学院教授朱怀球团队在bioRxiv预印版平台发表《深度学习算法预测新型冠状病毒的宿主和感染性》一文中指出,蝙蝠和水貂可能是新型冠状病毒的两个潜在宿主,水貂可能是中间宿主。
据朱怀球团队的研究表明,新型冠状病毒与云南菊头蝠中存在的RaTG13冠状病毒一致性高达96%;另外,基于深度学习开发的VHP(病毒宿主预测)方法预测的结构化显示,水貂的病毒的传染性模式更接近新型冠状病毒。
据悉,在此次研究中,该团队使用了基于深度学习模型的AI技术寻找病毒宿主。这可能是国内首次在2019新型冠状病毒的研究中使用深度学习AI取得成果。
01
AI加入抗击疫情一线,深度学习寻找病毒宿主
一种前所未知的新型病毒出现后,确定病毒宿主是十分重要的。由于病毒复杂的多样性,目前人类已知的病毒和对病毒本身的了解还远远不够,大多数以人类为宿主的病毒,通常对人类造成生命安全威胁之后,才会进一步引起人们的重视。
对一些本不以人类为宿主的病毒来说,其本身也可能突发变异,或者通过中间宿主也可感染至人类。因此,快速寻找鉴别未知病毒的宿主,能够帮助人类了解病毒与宿主间的相互作用,以应对突发变异等潜在威胁,从而有针对性的对病毒进行预防和控制,具有重要意义。
为了检测新病毒的潜在宿主和致病性,传统的方法是基于通过建立病毒基因库,将新型病毒的DNA序列与已知病毒的基因序列做对比检索,通过比较病毒DNA局部的相似性,从而做出对新病毒宿主的模糊预测。
北京大学朱怀球团队在对2019新型冠状病毒的宿主研究和预测中,通过构建VHP算法模型,将已经提取的新型冠状病毒的基因组,与已有病毒基因数据库做数据检索和对比。在算力的支持下,通过深度学习模型对病毒基因数据的广域检索,实现新型冠状病毒自然宿主的寻找和预测。
02
VHP模型计算出新型冠状病毒的感染性
朱怀球团队在bioRxiv预印版平台发表的论文中称:“为了构建VHP模型,我们使用了一个双路卷积神经网络用于预测病毒序列宿主;我们把病毒的宿主分为五种类型,包括植物、细菌、无脊椎动物、脊椎动物和人类;输入病毒核苷酸序列,基于深度学习的VHP模型,将为每种宿主类型分别输出5类结果,分别反映出新型冠状病毒在每种类型中感染性。”
通过对VHP模型计算的结果分析,筛选的病毒宿主包括犬、猪、貂、龟和猫。研究人员经过分析比较后认为水貂的病毒的传染性模式更接近新型冠状病毒。
实际上,相比传统的AI机器学习方法,AI深度学习的方法训练出的模型可以适用于多种不同类型的数据,还可以结合多种来源的数据,共同完成一个任务。
在基因数据中,并不是所有的数据都有准确的高质量数据标签,而通过深度生成模型,即使没有高质量标签的数据也能得到充分使用,从而使得模型能够持续的提升性能。
因而,从AI深度学习的种类上来看,除了常见的有监督学习和无监督学习,半监督学习与强化学习更适合,也更需要医学界、生物界更多的关注。
03
深度学习AI+医疗:应用前景广阔但也有局限性
在AI的应用场景中,医疗行业是其应用前景最为广阔的行业之一。生物信息领域中,制药企业的药物研发、医疗设备收集的健康数据、病患者的诊断以及治疗方案的确定都有深度学习型AI的应用需求。
深度学习的本质,是一个复杂的AI学习算法。目前,深度学习应用最为广泛的是在计算机视觉以及语言识别领域。其中计算机视觉技术在医疗领域也有一定的应用,如医学影像的识别。
不过,深度学习在医疗领域的应用也面临现实应用的局限性,其中之一就是分析过程缺乏解释性。实际上,深度学习本质上也是统计学习的一种,通过对已知数据的汇总和检索,以算法的优化达到某种结果的预测。
也就是说,深度学习算法得出的结果是概率学上对现有数据条件下的结果预测,并不能给出“解题过程”只能给出结果。这也使得不可避免的出现一定的现实结果偏差。
以此次新型冠状病毒宿主研究为例,在VHP模型计算给出结果后,筛选的病毒宿主包括犬、猪、貂、龟和猫,仍需要研究人员对比分析后得出进一步的结论:水貂的病毒的传染性模式更接近新型冠状病毒。
04
技术之力亦需“跨越偏见”
此外,如果输入数据样本本身带有“大数据偏见”,那么模型计算则会放大这种“偏见”,从而影响结果在现实场景中的准确性。
对于基于深度学习的医疗AI而言,这样的情况也很难以能够说百分之百避免,特别是面对复杂庞大的医疗数据而言,这样的“偏见”带来的结果是人们难以接受的。
因而对于深度学习AI在医疗领域的落地,除了技术实现本身要解决的问题之外,由技术引发蝴蝶效应也更应该获得关注。
从好的一面来看,深度学习型AI在医疗领域的落地,不啻为补充优质医疗资源的“良方”,同时深度学习AI以及大数据等新技术的应用,也为人们在未来面对“新型冠状病毒”之类的突发性传染病给予技术的力量。
05
我们将生活在一个分析所有数据的时代
《大数据时代》作者维克托·迈尔-舍恩伯格前瞻性地预见到:“在大数据时代,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样。”
在数据时代,AI深度学习与算法、大数据的进步与发展将使得人类迎来一个全新的时代,在肆虐的病毒面前,人类并不会无动于衷。在当前新型冠状病毒暴发的艰难时刻,更需要人们充满信心,以更加顽强的勇气和智慧,以面对新型病毒的挑战!
科技自媒体刘志刚,订阅号:互联网江湖(ID:VIPIT),转载商务合作加微信:13124791216,转载保留作者版权信息违者必究。
申请创业报道,分享创业好点子。点击此处,共同探讨创业新机遇!
对于AI从业者来说,2022年恐怕不是什么好年景。资本寒冬的说法越发高涨,商汤、涂鸦等独角兽的市值大幅缩水。二级市场的悲观情绪传导到一级市场后,整个行业的融资频次断崖式下滑,曾经炙手可热的资本宠儿,正在遭遇“创新者的窘境”。
在科幻电影《普罗米修斯》中,有一个让人印象深刻的智能医疗舱。患者只需要躺在里面,便会进行一个全身的健康扫描,并得到相应的医疗建议,甚至可以直接进行手术治疗。
从20世纪前AI应用在临床知识库,到2000-2015年国外将研究重点放在手术机器人应用落地、鼓励发展电子病历,再到2015年之后的AI+影像应用、智慧病案等新产品相继面世,关于医疗AI的探索和商业化落地从未停止。
据IDC统计数据显示,到2025年,世界人工智能市场总值将达到1270亿美元,其中医疗行业将占市场规模的1/5,可见AI医疗健康的前景巨大。美国咨询公司弗罗斯特沙利文公司就曾提到,“人工智能可将医疗效果提高30%到40%,减少多达50%的医疗成本”。
如何以人工智能技术进行充分挖掘、开采、提炼、加工,以变革性的科技效率提升高品质健康检测、疾病预防,以及健康风险评估等方面的巨大潜能?
我不是危言耸听,现在全球的AI巨头都在做MCP,毫不夸张的说:谁能把MCP做起来,谁就拥有AI生态控制权,谁就是AI圈的老大。你们有没有发现,MCP在2025年初开始特别火爆,互联网技术大厂都在强推MCP。(1)阿里云百炼搞了个MCP平台,提供50+预置MCP服务。不过大都只面向阿里系产品。(2)腾
2025国际人工智能程序设计精英挑战赛(IAEPC)在香港中文大学成功举办。作为主办方之一,欧美同学基金会理事长李军接受了大赛主持人艾诚采访。在采访中,李军认为IAEPC不仅是一场“冠军中的冠军”对决,更是一次全球AI人才的线下交流盛会。大赛“史无前例”的吸引了全球青年科技精英汇聚香港,更加推动和普
2025国际人工智能程序设计精英挑战赛(IAEPC)在香港中文大学成功举办。作为大赛发起人方之一及裁判委员会负责人,施韩原与杜瑜皓接受了大赛主持人艾诚采访。裁判委员会主席施韩原分享了此次大赛的亮点,IAEPC首次引入创新赛道,探索选手如何与AI合作进行答题。裁判委员会副主席杜瑜皓认为,选手最终目标并
2025国际人工智能程序设计精英挑战赛(IAEPC)在香港中文大学成功举办。来自深圳的学生吴林林作为主办方记者团成员,采访了大赛冠军选手之一。在吴林林的采访中,选手认为与来自全球的参赛者交流是自己学到的最重要的一课。在科技与AI之前,选手们可以平等、开放、友好的交流。以下是采访实录(有删节):吴林林
2025国际人工智能程序设计精英挑战赛(IAEPC)在香港中文大学成功举办。来自深圳的学生吴林林作为主办方记者团成员,采访了大会嘉宾:全国政协委员、香港特别行政区立法会议员、香港中文大学工程学院副院长、IAEPC联合发起人黄锦辉先生。在吴林林的采访中,黄锦辉教授勉励年轻人要像懂中文和英语一样懂AI,
昨天新出了一个AI,据说比DeepSeek还牛,而截止到今早,已经有10万人在排队申请Manus邀请码了,而且它邀请码已经炒到10万了。这是北京的一家人工智能公司蝴蝶科技,创始人是一名来自华中科技大学的90后毕业生肖弘,突然向全球宣布:世界上第一款真正的人工智能、通用智能体产品出现了,名叫Manus
谣言肆虐,擦亮眼睛
苹果16弄了两个版本,一个是专门给中国人用的,准备用百度的AI,还要交钱。第二个是全世界都可以用的,用了ChatGPT,包括台湾、香港、澳门都可以用。以后都这样了。好,问题就出在这,苹果和百度的合作出现问题了,新闻连起来看,才能明白其中含义。新闻一:苹果正在和腾讯、字节初步接洽,考虑将二者的AI模型
“技术日新月异,人类生活方式正在快速转变,这一切给人类历史带来了一系列不可思议的奇点。我们曾经熟悉的一切,都开始变得陌生。”计算机之父约翰·冯·诺依曼曾这样说到。