1月24日,北京大学工学院教授朱怀球团队在bioRxiv预印版平台发表《深度学习算法预测新型冠状病毒的宿主和感染性》一文中指出,蝙蝠和水貂可能是新型冠状病毒的两个潜在宿主,水貂可能是中间宿主。
据朱怀球团队的研究表明,新型冠状病毒与云南菊头蝠中存在的RaTG13冠状病毒一致性高达96%;另外,基于深度学习开发的VHP(病毒宿主预测)方法预测的结构化显示,水貂的病毒的传染性模式更接近新型冠状病毒。
据悉,在此次研究中,该团队使用了基于深度学习模型的AI技术寻找病毒宿主。这可能是国内首次在2019新型冠状病毒的研究中使用深度学习AI取得成果。
01
AI加入抗击疫情一线,深度学习寻找病毒宿主
一种前所未知的新型病毒出现后,确定病毒宿主是十分重要的。由于病毒复杂的多样性,目前人类已知的病毒和对病毒本身的了解还远远不够,大多数以人类为宿主的病毒,通常对人类造成生命安全威胁之后,才会进一步引起人们的重视。
对一些本不以人类为宿主的病毒来说,其本身也可能突发变异,或者通过中间宿主也可感染至人类。因此,快速寻找鉴别未知病毒的宿主,能够帮助人类了解病毒与宿主间的相互作用,以应对突发变异等潜在威胁,从而有针对性的对病毒进行预防和控制,具有重要意义。
为了检测新病毒的潜在宿主和致病性,传统的方法是基于通过建立病毒基因库,将新型病毒的DNA序列与已知病毒的基因序列做对比检索,通过比较病毒DNA局部的相似性,从而做出对新病毒宿主的模糊预测。
北京大学朱怀球团队在对2019新型冠状病毒的宿主研究和预测中,通过构建VHP算法模型,将已经提取的新型冠状病毒的基因组,与已有病毒基因数据库做数据检索和对比。在算力的支持下,通过深度学习模型对病毒基因数据的广域检索,实现新型冠状病毒自然宿主的寻找和预测。
02
VHP模型计算出新型冠状病毒的感染性
朱怀球团队在bioRxiv预印版平台发表的论文中称:“为了构建VHP模型,我们使用了一个双路卷积神经网络用于预测病毒序列宿主;我们把病毒的宿主分为五种类型,包括植物、细菌、无脊椎动物、脊椎动物和人类;输入病毒核苷酸序列,基于深度学习的VHP模型,将为每种宿主类型分别输出5类结果,分别反映出新型冠状病毒在每种类型中感染性。”
通过对VHP模型计算的结果分析,筛选的病毒宿主包括犬、猪、貂、龟和猫。研究人员经过分析比较后认为水貂的病毒的传染性模式更接近新型冠状病毒。
实际上,相比传统的AI机器学习方法,AI深度学习的方法训练出的模型可以适用于多种不同类型的数据,还可以结合多种来源的数据,共同完成一个任务。
在基因数据中,并不是所有的数据都有准确的高质量数据标签,而通过深度生成模型,即使没有高质量标签的数据也能得到充分使用,从而使得模型能够持续的提升性能。
因而,从AI深度学习的种类上来看,除了常见的有监督学习和无监督学习,半监督学习与强化学习更适合,也更需要医学界、生物界更多的关注。
03
深度学习AI+医疗:应用前景广阔但也有局限性
在AI的应用场景中,医疗行业是其应用前景最为广阔的行业之一。生物信息领域中,制药企业的药物研发、医疗设备收集的健康数据、病患者的诊断以及治疗方案的确定都有深度学习型AI的应用需求。
深度学习的本质,是一个复杂的AI学习算法。目前,深度学习应用最为广泛的是在计算机视觉以及语言识别领域。其中计算机视觉技术在医疗领域也有一定的应用,如医学影像的识别。
不过,深度学习在医疗领域的应用也面临现实应用的局限性,其中之一就是分析过程缺乏解释性。实际上,深度学习本质上也是统计学习的一种,通过对已知数据的汇总和检索,以算法的优化达到某种结果的预测。
也就是说,深度学习算法得出的结果是概率学上对现有数据条件下的结果预测,并不能给出“解题过程”只能给出结果。这也使得不可避免的出现一定的现实结果偏差。
以此次新型冠状病毒宿主研究为例,在VHP模型计算给出结果后,筛选的病毒宿主包括犬、猪、貂、龟和猫,仍需要研究人员对比分析后得出进一步的结论:水貂的病毒的传染性模式更接近新型冠状病毒。
04
技术之力亦需“跨越偏见”
此外,如果输入数据样本本身带有“大数据偏见”,那么模型计算则会放大这种“偏见”,从而影响结果在现实场景中的准确性。
对于基于深度学习的医疗AI而言,这样的情况也很难以能够说百分之百避免,特别是面对复杂庞大的医疗数据而言,这样的“偏见”带来的结果是人们难以接受的。
因而对于深度学习AI在医疗领域的落地,除了技术实现本身要解决的问题之外,由技术引发蝴蝶效应也更应该获得关注。
从好的一面来看,深度学习型AI在医疗领域的落地,不啻为补充优质医疗资源的“良方”,同时深度学习AI以及大数据等新技术的应用,也为人们在未来面对“新型冠状病毒”之类的突发性传染病给予技术的力量。
05
我们将生活在一个分析所有数据的时代
《大数据时代》作者维克托·迈尔-舍恩伯格前瞻性地预见到:“在大数据时代,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样。”
在数据时代,AI深度学习与算法、大数据的进步与发展将使得人类迎来一个全新的时代,在肆虐的病毒面前,人类并不会无动于衷。在当前新型冠状病毒暴发的艰难时刻,更需要人们充满信心,以更加顽强的勇气和智慧,以面对新型病毒的挑战!
科技自媒体刘志刚,订阅号:互联网江湖(ID:VIPIT),转载商务合作加微信:13124791216,转载保留作者版权信息违者必究。
申请创业报道,分享创业好点子。点击此处,共同探讨创业新机遇!
对于AI从业者来说,2022年恐怕不是什么好年景。资本寒冬的说法越发高涨,商汤、涂鸦等独角兽的市值大幅缩水。二级市场的悲观情绪传导到一级市场后,整个行业的融资频次断崖式下滑,曾经炙手可热的资本宠儿,正在遭遇“创新者的窘境”。
在科幻电影《普罗米修斯》中,有一个让人印象深刻的智能医疗舱。患者只需要躺在里面,便会进行一个全身的健康扫描,并得到相应的医疗建议,甚至可以直接进行手术治疗。
从20世纪前AI应用在临床知识库,到2000-2015年国外将研究重点放在手术机器人应用落地、鼓励发展电子病历,再到2015年之后的AI+影像应用、智慧病案等新产品相继面世,关于医疗AI的探索和商业化落地从未停止。
据IDC统计数据显示,到2025年,世界人工智能市场总值将达到1270亿美元,其中医疗行业将占市场规模的1/5,可见AI医疗健康的前景巨大。美国咨询公司弗罗斯特沙利文公司就曾提到,“人工智能可将医疗效果提高30%到40%,减少多达50%的医疗成本”。
如何以人工智能技术进行充分挖掘、开采、提炼、加工,以变革性的科技效率提升高品质健康检测、疾病预防,以及健康风险评估等方面的巨大潜能?
在数字化与智能化深度交织的时代浪潮中,安全的边界不断延展,技术的演进正引领产业迈向新一轮变革。10月24日,以“弈动Dynamic·数智跃迁博弈无界”为主题的2025TechWorld智慧安全大会在北京盛大召开。来自国家部委、院士学者、高校科研机构和企业的权威专家与业界精英齐聚北京,共议AI安全、数
2025年10月25日,2025世界青年科学家峰会之人工智能(AI)融合创新发展论坛在浙江温州成功举办。本次论坛由国际院士科创中心主办,中国投资协会能源投资专业委员会、温港院士科创中心承办,中国电工技术学会、中科先进技术温州研究院与温州市电力工程学会提供支持,以“瓯江论道-AI赋能绿色发展”为主题,
我觉得我们AI的目标是:从芯片设计到软件生态,全链路自主开发,建立可控的世界级AI体系。所以这是俺对未来5年中国AI圈的展望和判断。(1)2026年,英伟达造车、国产开车26年国产芯片会在推理和垂直场景上发力。以DeepSeek为代表,大多数AI大模型会以软件弥补硬件不足,所以训练和推理分开,训练就
文/道哥在深陷“后门”风波、接受网信办问询之后,英伟达的“特供版”H20芯片,又有了新消息。近日,美国科技媒体《TheInformation》援引知情人士消息称,英伟达已悄然向其关键供应商——包括负责封装的安靠科技、供应高带宽内存的三星电子、以及承担后端处理的富士康发出指令,要求暂停所有与H20AI
文/二风来源/节点财经一场关于“中国芯”的IPO审议,正把投资者们的目光锁定在上交所。根据上交所发布的公告,上市审核委员会已定于9月26日审议摩尔线程的科创板首发申请。作为中国半导体自主化浪潮中最受瞩目的“考生”之一,包括其创始人显赫的英伟达背景、高达80亿元人民币的募资雄心,以及在国产GPU领域取
技术的进步永无止境,继创下TPC-C性能&性价比双冠之后,阿里云PolarDB云原生数据库再度实现关键突破。9月24日杭州云栖大会上,阿里云宣布推出全球首款基于CXL(ComputeExpressLink)2.0Switch技术的PolarDB数据库专用服务器。在原有RDMA网络的基础上,Polar
2025年9月24日,在杭州举办的云栖大会上,阿里云正式发布全新一代服务器操作系统AlibabaCloudLinux4(简称Alinux4)。Alinux4基于Linux6.6内核打造,是首个全面遵循龙蜥社区“开源生态合作倡议”规范的商业发行版。它不仅兼容主流开源社区生态,更针对阿里云最新9代ECS
9月24日,杭州云栖大会技术主论坛上,阿里云重磅发布AI安全护栏,提供五项核心安全能力,护航AI安全。一方面为客户提供融入AIAgent开发全链路的原生安全防护,另一方面持续用AI赋能安全产品智能化升级,打造Agentic-SOC安全运营,提升安全威胁检测和响应效率。在过去的一年,AIAgent正在